Using the self-organizing map to speed up the probability density estimation for speech recognition with mixture density HMMs
نویسندگان
چکیده
This paper presents methods to improve the probability density estimation in hidden Markov models for phoneme recognition by exploiting the Self-Organizing Map (SOM) algorithm. The advantage of using the SOM is based on the created approximative topology between the mixture densities by training the Gaussian mean vectors used as the kernel centers by the SOM algorithm. The topology makes the neighboring mixtures to respond strongly for the same inputs and so most of the nearest mixtures used to approximate the current observation probability will be found in the topological neighborhood of the "winner" mixture. Also the knowledge about the previous winners are used to speed up the the search for the new winners. Tree-search SOMs and segmental SOM training are studied aiming at faster search and suitability for HMM training. The framework for the presented experiments includes melcepstrum features and phoneme-wise tied mixture density HMMs.
منابع مشابه
Self-organization in mixture densities of HMM based speech recognition
In this paper experiments are presented to apply Self-Organizing Map (SOM) and Learning Vector Quantization (LVQ) for training mixture density hidden Markov models (HMMs) in automatic speech recognition. The decoding of spoken words into text is made using speaker dependent, but vocabulary and context independent phoneme HMMs. Each HMM has a set of states and the output density of each state is...
متن کاملTraining mixture density HMMs with SOM and LVQ
The objective of this paper is to present experiments and discussions of how some neural network algorithms can help the phoneme recognition with mixture density hidden Markov models (MDHMMs). In MDHMMs the modeling of the stochastic observation processes associated with the states is based on the estimation of the probability density function of the short-time observations in each state as a m...
متن کاملUsing Self-organizing Maps and Learning Vector Quantization for Mix- Ture Density Hidden Markov Models Using Self-organizing Maps and Learning Vector Quanti- Zation for Mixture Density Hidden Markov Models. Acta Polytechnica
Thesis for the degree of Doctor of Technology to be presented with due permission for public examination and criticism in Auditorium F1 of the Helsinki University of Technology on the 3rd of October, at 12 o'clock noon. ABSTRACT This work presents experiments to recognize pattern sequences using hidden Markov models (HMMs). The pattern sequences in the experiments are computed from speech signa...
متن کاملHybrid Training Method for Tied Mixture Density Hidden Markov Models Using Learning Vector Quantization and Viterbi Estimation
In this work the output density functions of hidden Markov models are phoneme-wise tied mixture Gaussians. For training these tied mixture density HMMs, modiied versions of the Viterbi training and LVQ based corrective tuning are described. The initialization of the mean vectors of the mixture Gaussians is performed by rst composing small Self-Organizing Maps representing each phoneme and then ...
متن کاملNoisy Speech Recognition with Discrete-Mixture HMMs Based on MAP Estimation
In this paper, we develop a novel modeling scheme for discrete-mixture HMMs (DMHMMs) by using maximum a posteriori (MAP) estimation. Also the MAP estimated DMHMMs are used for speech recognition to improve the accuracy under noisy conditions. The DMHMMs were originally proposed to reduce calculation costs in decoding process [1][2]. We propose a new method for MAP estimation of DMHMM parameters...
متن کامل